Discriminative multinomial Naïve Bayes for network intrusion detection

نویسندگان

  • Mrutyunjaya Panda
  • Ajith Abraham
  • Manas Ranjan Patra
چکیده

This paper applies discriminative multinomial Naïve Bayes with various filtering analysis in order to build a network intrusion detection system. For our experimental analysis, we used the new NSL-KDD dataset, which is considered as a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. We perform 2 class classifications with 10-fold cross validation for building our proposed model. The experimental results show that the proposed approach is very accurate with low false positive rate and takes less time in comparison to other existing approaches while building an efficient network intrusion detection system. KeywordsIntrusion detection, Discriminative parameter learning, DMNB, filtered classifier, NSL-KDD dataset, Accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network intrusion detection system: A machine learning approach

Intrusion detection systems (IDSs) are currently drawing a great amount of interest as a key part of system defence. IDSs collect network traffic information from some point on the network or computer system and then use this information to secure the network. Recently, machine learning methodologies are playing an important role in detecting network intrusions (or attacks), which further helps...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Anomaly Based Network Intrusion Detection by using Data Mining

As network attacks have increased in number and severity over the past few years, intrusion detection system (IDS) is increasingly becoming a critical component to secure the network. Due to large volumes of security audit data as well as complex and dynamic properties of intrusion behaviors, optimizing performance of IDS becomes an important open problem that is receiving more and more attenti...

متن کامل

Network Intrusion Detection Using a Hidden Naïve Bayes Binary Classifier

Using data mining techniques in intrusion detection systems is common for the classification of the network events as either normal events or attack events. Naïve Bayes (NB) method is a simple, efficient and popular data mining method that is built on conditional independence of attributes assumption. Hidden Naïve Bayes (HNB) is an extended form of NB that keeps the NB's simplicity and efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010